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An acoustic method for condition
classification of a water-filled
underground siphon

Zao Feng1 , Kirill V Horoshenkov2 and GuoYong Huang1

Abstract
This article reports on an application of the k-nearest neighbours pattern recognition and classification technique to con-
dition monitoring in a full-scale, water-filled siphon that is located beneath the underground. An experimental facility has
been designed and constructed at the University of Bradford to study using acoustic waves as excitation to observe the
characteristics of pipe sediments and wall damages on an underground sewer siphon. The effects of different amounts of
sediment inside the siphon and different size of artificial damage on the pipe wall have been studied. The sound pressure
level and acoustic energy were calculated from the acoustic signals which were recorded from three hydrophones under
several representative siphon conditions to extract useful features in order that the proposed k-nearest neighbours clas-
sification algorithm could be applied. It has been proven that acoustic-based approach is capable of providing sufficient
information on the condition of pipes for reliable classification and fault detection.
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Introduction

Water distribution systems are key elements of urban
water infrastructure. These systems are gradually dete-
riorating due to their ageing, operational stresses and
external environmental conditions.1 A majority of these
assets are hidden underground so that they are difficult
to access for routine visual inspection. As a result, there
is a need for a robust, remote method of inspection that
can be used to detect a critical change in order to opti-
mise their maintenance costs, or ensure timely rehabili-
tation work.2 For the inspection of water pipes, a few
techniques have been developed and used in the field,
for example, closed circuit television (CCTV) and laser
scan are well-adopted visual inspection techniques
which however are only operational above waterline.3,4

In addition, various geophysical techniques, such as
ground penetrating radar (GPR) exist to assess the
exterior of pipes.5,6 In recent years, there has been a

growing interest in using acoustic technologies for con-
dition monitoring applications such as sonar profiling
system, guided wave ultrasound and a number of multi-
sensors systems are in development.7–9

Sound waves can propagate through media which is
inaccessible to light or electromagnetic radiation. These
media include water filled drainage pipes in which the
turbidity of water is too high to be able to use conven-
tional CCTV inspection method.10 The frequency

1Department of Information and Control Engineering, Kunming

University of Science and Technology, Kunming, P.R. China
2The University of Sheffield, Sheffield, UK

Corresponding author:

GuoYong Huang, Department of Information and Control Engineering,

Kunming University of Science and Technology, Jingming South Road,

Chenggong, Kunming 650500, P.R. China.

Email: huanggy@nuaa.edu.cn

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://doi.org/10.1177/1687814019840893
https://journals.sagepub.com/home/ade
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1687814019840893&domain=pdf&date_stamp=2019-04-05


composition, temporal patterns and energy of the
sound waves which propagate through a pipe are
coloured by the structure conditions of the pipe walls,
quality of the pipe joints, wall roughness and by the
amount of sediment present in the pipe.11 This infor-
mation can be used directly, or after some condition-
ing, in the pattern classification process. In this process
feature, extraction is a critical step as we desire to
extract only those features representing the characteris-
tics of this process by separating them from various
unwanted disturbances. There are a large number of
signal processing methods available to extract meaning-
ful features from the recorded sounds, such as Short-
Time Fourier Transform (STFT), Wavelet Transform
(WT), Mel-Frequency Cepstral Coefficients (MFCCs)
and Wigner-Ville Distribution (WVD).12 Many of these
methods have been developed and tested extensively
condition classification with acoustic means through
hidden Markov models (HMMs), k-nearest neighbours
(KNN), decision trees or neural networks.13 Although
these algorithms have been developed and applied suc-
cessfully in areas like biometrics, no extensive applica-
tions were found in the condition monitoring of buried
civil facilities.14 Therefore, it is important to study and
reveal the patterns that represent particular condition
states, and to discover the relation between acoustic
features and a series of patterns labelled by a full-scale
model of a hydraulic siphon.

In this analysis, the sound pressure level of the
acoustic signals emitted in the siphon were analysed
using the Schroeder integration method within a num-
ber of different frequency bands. The acoustic energy
contained in each of the filter bands was then used as
meaningful feature for condition classification. The
acoustical signals used in analysis were collected from a
hydrophone array. KNN classification method was
then trained and applied to determine the structural
and operational conditions in the siphon. Although
there are many studies for general purpose of sound/
speech recognition system in the literature, the

available water-filled acoustic signal recognition studies
are limited. One example work developed in Yuan
et al.15 using Tikhonov regularisation to establish the
optimization objective function. In another study,16

acoustic signals were modelled by matched field pro-
cessing in the frequency domain. The proposed KNN
classification system is different from the other meth-
odologies by acoustic energy and combines with KNN
classifier, it is tested to be reliable under various pipe
conditions including sediment and damage with pipe
being surrounded by different medium.

Experimental methodology

Experiment setup

A 4.2m long and 2.0m high siphon using sections of
450mm concrete pipes was installed on a 500mm layer
of fine sand in an open top box made of 12mm ply-
wood as shown in Figure 1. The siphon was filled up
with clean water to the level of 900mm below the top
rims of the vertical parts, and the water level remained
during all the experiments as reference. The siphon was
instrumented with four 25mm hydrophones (Type
SQ31 by Sensor Technology Inc. Canada), hydrophone
1–hydrophone 3 were installed in the left leg of the
siphon (The hydrophones are named with capital letter
H followed by a number which is addressed to its posi-
tion in the test rig in the following text). Hydrophone 4
was installed in the right leg of the siphon 30mm above
the speaker and used as a reference receiver as shown in
Figure 2. The source was a 50mm diameter water resis-
tant speaker that was situated in a polyvinyl chloride
(PVC) enclosure (Type K50WP by Visaton Germany).
The speaker and three hydrophones were securely
attached to two aluminium tubes and placed into the
opposite legs of the siphon and kept at the same posi-
tions in all of the experiments conducted in the siphon.
Figure 2 illustrates schematically the arrangement of
this experiment.

Figure 1. Experimental siphon constructed in the hydraulics laboratory at the University of Bradford.
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The data acquisition system consisted of the follow-
ing: (1) a computer (with a sound card) installed with
WinMLS software; (2) four 8-channel high-pass hydro-
phones, (3) a B&K Type 2610 measuring amplifier and
a dual variable filter Kemo VBF 10M filter and (4) a
B&K Type 2708 power amplifier to drive the under-
water speaker. In addition, the experiment operators
were able to hear and control the quality and the stabi-
lity of the sound produced by the underwater speaker
using a stereo amplifier and headset.

Laboratory data collection

Three different siphon conditions were simulated in the
laboratory. They were as follows: (1) clean siphon with
no damage, (2) siphon with variable amount of sedi-
ment and (3) siphon with six different artificial cuts.
The sediment was simulated with acoustically transpar-
ent bags filled with fine sand. A maximum of 10 bags
were used in this experiment, each bag weighted
approximately 1 kg. The maximum cross-sectional
dimension of one sandbag corresponded to approxi-
mately 20% of the pipe cross section. Several bags at a
time were tied to a 9m rope separated by a 300mm dis-
tance, the number of bags deposited in the horizontal
section of the siphon by these means varied from 1 to
10. Wall damages were created on the horizontal sec-
tion of the siphon, the first type being a lateral cut of
size 50mm long. Its length was then increased to
100 and 200mm to study the effect the extent of damage
had on the quality of the pattern recognition algorithm.
Another type of damage was a 55mm longitudinal cut
located at 1.5m on the right of the lateral cut. The
length of this type of cut was subsequently increased to
150mm and was eventually converted into a 120mm
3 70mm hole. These conditions are illustrated in
Figure 3(a)–(d).

Signal pre-processing

Acoustic impulse response

WinMLS software controlled the sound card which
generated a 10 s sinusoidal sweep (chirp) in the fre-
quency range of 100–6000Hz. Sinusoidal sweep (chirp)
is widely used excitation signal to measure the transfer
function. Chirp-based measurements are considerably
less vulnerable to the deleterious effect of time variance,
and they are best suited for outdoor measurements in
presence of dynamically rough water surface.17 The sig-
nal was repeated eight times and averaged to increase
the signal-to-noise ratio. The sounds received on the
four hydrophones were digitised at 22,050Hz sampling
rate and recorded on the PC.

Examples of the typical signal recorded in the clean
siphon and in the siphon with two sandbags on the
hydrophone array are given in Figure 4(a) and (b),
respectively. Original acoustic signals received on
hydrophones H1–H3 were de-convolved using the con-
volution theorem

hl(t)=Re F�1 Ffyl(t)=Ffx(t)g½ �
� �

ð1Þ

To obtain acoustic pressure response h(t) at each of
the three positions in the siphon where the hydrophones
were installed. Here, x(t) is the excitation signal, yl(t) is
the signal recorded on the hydrophone l. It was
assumed that the acoustic impulse response carries suf-
ficient dynamic system information and can be used to
study the characteristics of the system. However, the
impulse response is a broadband acoustic signal and
only a part of its spectrum is affected by the change in
the siphon condition. A band-pass filter was used to
study the effect of a change in the siphon condition on
the acoustic impulse response. In this study, we adopted
a third order Chebyshev Type 1 band-pass filter with

Figure 2. Structure of the siphon and acoustic sensors.
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0.5 dB peak-to-peak ripple in the passband and 20 dB
of stopband attenuation. This type of filter is frequently
used in digital signal analysis and it provides a perfor-
mance similar to that expected from a Butterworth filter
at both low and high frequencies.18

The signals recorded on the three hydrophones were
filtered in five filter bands. In the case of the blockage
condition, these five 600Hz bands split equidistantly in

the 100–3000Hz frequency range. It was found that the
sound pressure did not depend on the amount of block-
age beyond 3000Hz. In the case of the siphon with
damage, the recorded signals were filtered in five
1000Hz bands in the 100–5000Hz frequency range. In
this case, the sound pressure was found to be relatively
insensitive to a change in the amount of damage at fre-
quencies above 5000Hz.

Figure 3. Siphon conditions simulated in the laboratory: Sandbags (a) and damages: lateral cut (b), longitudinal cuts (c) and manhole
(d) on the pipe wall.

(a) (b)

Figure 4. Acoustic pressure impulse response of clean siphon (a) and two sandbags in the siphon (b).
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Sound pressure level

The impulse response obtained from equation (1) was
then used to determine the sound pressure level as a
function of time according to the Schroeder integral18

L(t)= 10log10

1

D

ðt +D

t

ĥ
2
(t)dt

0
@

1
A ð2Þ

where t is a time instant at which the sound pressure
level is calculated, D is the duration of the integrating
time interval and ĥ(t) is the impulse response obtained
on hydrophone l and filtered in the frequency band k.
Figure 5 presents examples of the sound pressure level
data calculated using the impulse response recorded on
hydrophone 1 in the absence (1) and presence of two
sandbags in the siphon filtered (2) in two frequency
bands. Figure 6 is the sound pressure level of an unda-
maged siphon (1) and damaged siphon with a 120mm
3 70mm hole on the pipe wall (2) at two frequency

bands. However, it is not sufficient to determine the
siphon conditions from the difference suggested in
those figures. Hence, it is necessary to distract more
characteristic information from sound pressure level
data for the use of condition recognition process.

Feature extraction

Energy calculation

The feature extraction process was based on the estima-
tion of the acoustic energy in the impulse response at a
given instant. The acoustic energy19 was calculated as

Ejkl =

ðtj + r

tj

10Lkl(t)=10dt ð3Þ

where the times tj and tj + r define the time window j,
within which the integration was carried out. The time

Figure 5. Sound pressure level of clean siphon, two sandbags and six sandbags in the siphon at frequency band 600–1200 Hz (a)
and 1200–1800 Hz (b).

Figure 6. Sound pressure level of undamaged siphon, 200 mm slit and 200 mm slit + 1 manhole on the pipe wall at frequency band
1000–2000 Hz (a) and 2000–3000 Hz (b).
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window used in this analysis was split in six equidis-
tantly spaced time intervals of the width r. The width
of the time window was selected empirically to ensure
that the behaviour of the calculated acoustic energy
reflects the decay rate in the impulse at which this
energy was dissipated. In the case of a blockage condi-
tion, the time window was 0 ł t ł 45 ms so that the
interval width was r= 7:5 msec. In the case of a dam-
aged condition, the time window was 0 ł t ł 36 msec
so that r= 6 msec.

Data tensor construction

Training data used in this work relate to a set of mean-
ingful features that reflected the behaviour of the acous-
tic energy. These data were extracted from the acoustic
signals collected from a range of known siphon condi-
tions and used to provide criteria to compare against
new data. The new data, or testing data, were collected
from unknown siphon conditions. These data were used
to study the performance of the classification algo-
rithm, which was based on the KNN algorithm. The
acoustic energy calculated for a range of known condi-
tions was used to construct a four-dimensional (4D)
training data table or 4D tensor E, each element in this
tensor is the value of the acoustic energy determined by
the siphon condition (i), time window (j), frequency
band (k) and hydrophone channel (l)

E= Eijkl

� �
ð4Þ

Table 1 presents an example of such data set for a
range of blockage conditions. This table was con-
structed using the impulse response recorded on hydro-
phone 1 for 11 blockage conditions which are listed in
the form of 11 rows and 6 columns (time windows).
One particular frequency band (100–600Hz) was used
in the analysis. These data can be organised in the form
of the following energy matrix E= fEijg where
i= 1, :::, 11 and j= 1, :::, 6.

The acoustic energy training data matrix in Table 1
clearly illustrates that increasing the amount of porous
sediment in the siphon results in a noticeable decrease
in the calculated acoustic energy in all of the six time
intervals. This decrease is particularly dramatic as the
condition changes from one to four sandbags. A clear
pattern in the behaviour of the acoustic energy as a
function of the time interval can also be observed. The
acoustic energy measured in the time interval t2 ł t ł t5
is generally higher than in the other intervals. Each ele-
ment of this tensor is the value of the acoustic energy
determined by siphon condition (i), time window (j),
frequency band (k) and hydrophone (l). The rank of
this tensor can be reduced to two dimensions (2D) or
three dimensions (3D) if the signal is filtered in one fre-
quency band and/or if the data from one hydrophone
only are used in the analysis.

The damage condition training data tensor was cre-
ated in the same manner. The elements in this tensor
are the acoustic energies calculated using a different
data set obtained independently in an experiment when
controlled damage was inflicted to the siphon. The 4D
of this tensor here correspond to the number of siphon
damage conditions, six time windows, five frequency
bands and three hydrophone channels. Table 2 presents
an example of the damage condition training data
matrix which was constructed using the signal recorded
on hydrophone 1 and filtered in the frequency range of
100–1000Hz.

Testing data were used to extract features from sig-
nals collected from unknown siphon conditions. Each
of these data sets was organised in the form of a tensor
using the procedure similar to that discussed in the pre-
vious paragraph. We used five sets of testing data
recoded in the siphon with a blockage and five sets of
data recorded in the siphon with some damage. For
each unknown condition, a 1 3 6 3 5 testing data
energy matrix was constructed with one unknown
siphon condition, six time windows and five frequency
bands for one particular hydrophone.

Table 1. The acoustic energy as a function of time and amount of porous sediment measured in the frequency band of 100–600 Hz.

Relative energy t1 t2 t3 t4 t5 t6

Class 1 (clean pipe) 1.1487 2.1126 3.7360 5.5340 2.5631 0.9781
Class 2 (1 bag) 0.0652 0.2332 0.7196 1.2489 0.9794 0.6126
Class 3 (2 bags) 0.0153 0.0597 0.1622 0.7183 1.1071 0.6404
Class 4 (3 bags) 0.0078 0.0345 0.0966 0.5847 1.0419 0.4872
Class 5 (4 bags) 0.0208 0.0230 0.0871 0.3608 0.3474 0.1836
Class 6 (5 bags) 0.0117 0.0051 0.0513 0.2403 0.2890 0.0524
Class 7 (6 bags) 0.0114 0.0154 0.0436 0.1220 0.0926 0.1648
Class 8 (7 bags) 0.0082 0.0123 0.0226 0.0393 0.0284 0.3188
Class 9 (8 bags) 0.0004 0.0032 0.0087 0.0077 0.0692 0.1674
Class 10 (9 bags) 0.0003 0.0023 0.0039 0.0053 0.0312 0.0303
Class 11 (10 bags) 0.0003 0.0015 0.0044 0.0080 0.0188 0.0075
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Condition classification

KNN algorithm

KNN is a commonly used classification method which
is based on the use of distance measures.13 Given an
unlabelled test data x, find K number of its ‘closest’
neighbours in a set of labelled training data fy1, y2:::yng
and assign x to the label which appears most frequently
within this particular data subset. Usually the
Euclidean distance is used to determine the difference
between the training energy data recorded for condi-
tion i and testing energy data for the condition which
needs to be classified. This difference can be determined
as

djkl(i)= Eijkl � Xjkl

�� �� ð5Þ

where Xjlk is a 3D tensor with the test data. In this
work, the elements of this tensor are the acoustic ener-
gies calculated for the acoustic signal recorded on
hydrophone l, filtered in the frequency band k and inte-
grated in the time window j. The problem of condition
classification can then be reduced to finding the mini-
mum of djkl(i) with respect to the condition index i, that
is

<jkl = i : min
i

djkl(i)

� �
ð6Þ

where the 3D condition number tensor < is composed
of the elements corresponding to one of the known
siphon conditions as defined in the training data tensor
E. It is then possible to apply a majority vote to < in
order to count the number of instances when a particu-
lar class (condition) along any of the 3D j, k, l appeared
the most. This condition index can then be assigned as
the condition (in the KNN sense) in which the siphon
was at the time when the testing data were collected.

In general, < is defined to be a 3D tensor of size
J 3 K 3 L, where J is the number of time windows used
in the data analysis, K is the number of frequency bands
and L is the number of hydrophones through which the

data were collected. However, the number of dimen-
sions in < can be reduced if only one hydrophone chan-
nel is adopted or if the signal used in equation (3) is
unfiltered or filtered in one frequency band only. In this
case, < can be expressed in the matrix form (2D case)
or as a data vector (one-dimensional (1D) case).

Decision making

Majority vote is a decision rule used in KNN classifica-
tion method that normally select the number appearing
more than half out of all numbers,13 but if there are
more than two classes that the numbers can be divided
among, then the number which has the highest times of
appearance would make it the majority vote. The
majority rule can stand even if there is only one more
appearance for this number.

This section presents the majority vote which was
applied progressively to 1D, 2D and 3D condition
number tensor (<). The 1D condition number vector
was constructed using the original unfiltered acoustical
data recorded on hydrophone 1. The 2D condition
matrix was constructed using the acoustical data
recorded on hydrophone 1 and filtered in K frequency
bands. The 3D condition number tensor was con-
structed using the acoustical data recorded on L hydro-
phones and filtered in K frequency bands. The majority
votes were applied using condition numbers which were
arranged in the form of a tensor < whose dimension
was changed from one to three using the procedure
outlined above. Examples of condition number tensors
< for the blockage test and damage test data corre-
sponding to three different types of analysis are shown
in Table 3.

Majority vote was applied to each row of < con-
structed for the blockage and damage conditions in
1D, 2D and 3D. Some results obtained from this analy-
sis are shown in Table 3. Four outcomes of the major-
ity vote analysis were achieved: (1) the correct result,
whereby the majority vote identified the correct condi-
tion in the siphon; (2) a false result, whereby the major-
ity vote identified a wrong condition in the siphon; (3)

Table 2. The acoustic energy as a function of time and amount of porous sediment measured in the frequency band of 100–
1000 Hz.

Relative energy t1 t2 t3 t4 t5 t6

Class 1 (undamaged pipe) 0.0228 1.9648 0.4031 0.0839 0.0537 0.0360
Class 2 (50 mm cut) 0.0679 3.0519 1.1786 0.1822 0.3956 0.0790
Class 3 (100 mm cut) 0.0600 3.3235 0.9099 0.3542 0.6084 0.1222
Class 4 (200 mm cut) 0.0063 0.2887 0.1280 0.0360 0.0211 0.0133
Class 5 (200 and 55 mm cut) 0.0084 0.5309 0.3197 0.1411 0.0356 0.0195
Class 6 (200 and 150 mm cut) 0.0084 0.5310 0.1576 0.0291 0.0203 0.0190
Class 7 (200 mm and square hole) 0.0108 1.2852 0.3392 0.0774 0.1887 0.0499
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an ambiguous result, when no clear decision could be
drawn from majority vote because the correct condi-
tion number appeared as frequent as another condition
number; and (iv) a failure to make a decision as all con-
dition numbers appeared equal times. In the case of 1D
data, the majority vote was simply based on the highest
times of appearance of one particular condition in the
index vector as illustrated in the first row of Table 3. In
the case of 2D data, the majority vote rule was initially
applied row-wise so that the index matrix < was
reduced to an index column. The majority vote rule
was then applied again to the resultant index column as
it was done in the 1D case. This process is illustrated in
the second row of Table 3. In the case of 3D data, the
majority vote rule was applied three times so that the
rank of the 3D index tensor < was gradually reduced
until the final classification was made. This is illu-
strated in the third row of Table 3.

The probability distribution was also calculated for
2D and 3D condition numbers using the following
equation

Pr (X =mjN )=
Nm

N
,
XI

m= 1

Pr (X =m)= 1 ð7Þ

where N is the number of all condition estimations and
Nm is the number of condition estimation, X chosen to
be class m,m 2 ½1, I �, I is the maximum number of
siphon conditions.

The statistical probability for the correct classifica-
tion was calculated as the proportion of the correct
classification instances observed in the 3D index tensor
< and as the proportion of the correct majority votes.
The results are shown in Table 4. In the case of the
blockage tests, the results of majority vote applied to
1D unfiltered data for some siphon conditions are
either ambiguous or incorrect. Here, the probability of
the correct estimation determined from the condition
number vector < is generally below 50%. The 2D and
3D classification results show higher certainty due to
the filtering of acoustic signals in several narrow lower
frequency bands which contain less ambiguous infor-
mation about the siphon conditions than those con-
fined to the higher frequency bands. The probability

Table 3. Example applications of the majority vote analysis to blockage and damage test data.

Pipe condition <: (decision) Test 1 (clean pipe)
(class no.1)

Test 1 (undamaged pipe)
(class no.1)

1D
(time)

1 1 2 1 1 1ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hydrophone1

: (1) 1 1 1 1 1 1ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hydrophone1

: (1)

2D
(time, frequency)

1 1 1 2 1 1
1 1 1 1 1 3
1 1 1 1 1 1
1 1 1 1 1 1
1 2 1 3 3 1

0
BBBB@

1
CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hydrophone1

:

1
1
1
1
1

0
BBBB@

1
CCCCA : (1)

1 1 1 1 1 1
6 3 1 1 2 7
1 1 1 1 1 1
2 1 1 1 1 2
1 1 1 7 1 1

0
BBBB@

1
CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hydrophone1

:

1
1
1
1
1

0
BBBB@

1
CCCCA : (1)

3D
(time, frequency, hydrophone)

1 1 1 2 1 1
1 1 1 1 1 3
1 1 1 1 1 1
1 1 1 1 1 1
1 2 1 3 3 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hydrophone1

1 1 2 2 3 1
1 1 1 1 1 3
1 1 1 1 1 1
1 1 1 1 8 1
1 3 1 1 4 4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hydrophone2

1 1 2 2 3 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 2 4 4 3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hydrophone3

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

1
1
1
1
1

1
1
1
1
1

1
1
1
1
A�

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: (1)

1 1 1 1 1 1
6 3 1 1 2 7
1 1 1 1 1 1
2 1 1 1 1 2
1 1 1 7 1 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hydrophone1

1 1 1 1 1 1
5 2 1 1 7 7
7 1 1 6 1 7
1 1 1 1 4 1
1 1 1 1 1 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hydrophone2

1 1 1 1 2 1
5 1 1 1 7 7
1 1 7 1 1 1
1 1 1 1 1 1
1 1 1 7 1 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hydrophone3

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

1
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1
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1
1

1
1
1
1
1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
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: (1)

1D: one dimension; 2D: two dimensions; 3D: three dimensions.
*A stands for ‘ambiguous result’, that is, when no certain decision can be made based on MV.
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for the correct classification in the majority vote experi-
ment with a blockage was 60% for 1D analysis. This
probability increased to 72% and 76% for 2D and 3D
classification analysis, respectively.

The probability of the correct classification for the
algorithm based on the 3D index tensor < is approxi-
mately 90%. These probabilities reduce slightly to 77%
and 73% when the tensor dimensionality was increased
to 2D and 3D, respectively (see Table 4). The majority
vote analysis works better for the damage condition
classification. Table 4 shows that the probability of the

Figure 7. The probability density functions for the blockage condition estimation based on five sets of test data: 2D (left) and 3D (right).

Table 4. Proportion of the correct condition estimations from
the index tensor <.

Number of correct
condition estimations/
all estimations

Blockage Damage

< MV < MV

1D 46.7% 60% 90.0% 100%
2D 50.0% 72% 77.3% 96%
3D 49.8% 76% 73.1% 88%

MV: majority vote; 1D: one dimension; 2D: two dimensions; 3D: three

dimensions.
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correct classification with this method is 100% in the case
of 1D analysis. This probability decreases slightly with the
increased dimensionality of the problem (see Table 4).

Figures 7 and 8 present the probability as a function
of the condition number of all five test data sets for the
blockage and damage conditions, respectively. Each of
these graphs shows a maximum which corresponds to

the condition number that occurs most often in the test
data set. In the blockage experiment, the amplitude of
this maximum tends to reduce with the increased
amount of sediment deposited in the pipe. In the dam-
age experiment, the amplitude of this maximum is rela-
tively unaffected by the extent of the damage inflicted
on the siphon. In both experiments, the maximum in

Figure 8. The probability density function for the damage condition estimation based on five sets of test data: 2D (left) and 3D
(right).
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the probability data remained sufficiently distinct to be
used for condition classification.

The results of damage classification are less ambigu-
ous than the results of blockage classification. One
explanation for this difference is that the positions of
acoustic source and hydrophones were undisturbed
when more damage was inflicted to the pipe. On the
contrary, the position of the source and receive array
were disturbed each time when more sediment was
added to the siphon to simulate the blockage evolution.
In this way, the recorded acoustic impulse response
was affected in the blockage experiment. This phenom-
enon relates to the multi-modal nature of the sound
field in the siphon and strong variations in the sound
field as a function of the sensor position. It was noticed
that using acoustic energy as a feature to discriminate
between damaged siphon conditions by applying KNN
algorithm and majority vote wisely can achieve more
accurate results. The results of the 1D classification
analysis suggest that unfiltered acoustic data can pro-
vide sufficient information to correctly identify various
damage conditions.

Summary

Acoustic signals were collected from a range of typical
blockage and damage siphon conditions which were
recreated in the laboratory. The sound pressure level
was calculated so that the acoustic energy as a function
of time could be determined and used as a feature in
the classification analysis. Original broadband signals
recorded on hydrophone 1 were used for 1D analysis,
and these signals were then filtered by Chebyshev type
I digital filter in several narrow frequency bands and
used in 2D analysis. More acoustic data recorded on
hydrophones 2 and 3 were added to the analysis to
make it 3D.

KNN was used as classification method to classify
the siphon conditions. The acoustic technique and the
adopted KNN classification system are proved to be
capable of discriminating different siphon conditions
collected under blockage and damage conditions were
used to provide training and testing data for classifica-
tion. For blockage conditions, acoustic data in the
lower frequency bands contain more useful information
than those filtered through the higher frequency bands.
Therefore, 2D and 3D data analysis yielded better a
classification than 1D data. Majority vote improved
the performance of the classification algorithm by
removing some uncertainty from the data. Damage
classification results cannot be improved by increasing
the number of the index tensor dimensions used in the
analysis. This suggests that the acoustic energy calcu-
lated from data collected under damage conditions are
less frequency dependent than in the blockage

condition case. The recorded acoustic impulse response
is sensitive to the sensor position and this effect needs
to be taken into account computationally or through
improving the procedure for these experiments.
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